
Software Requirements Specification (SRS)

Project Daily Gambit

Team: TheAnh Tran, Zhu Lu, Matthew Svenson, ThienTran Le, Tim Truong,
Ashraf Mohid (Team 9)
Authors: Zhu Lu, Matthew Svenson, ThienTran Le, Tim Truong, TheAnh Tran,
Ashraf Mohid
Customer: Middle School Educators and Minors
Instructor: Dr. Daly

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



1 Introduction

The subsections of this SRS will include information that is pertinent to the
project at hand.

In this first section, aptly named “Introduction”, there will be an overview of what
the Software Requirements Specifications contain. The subsections in this introduction
are as follows:

- 1.1 Purpose
- 1.2 Scope
- 1.3 Definitions, acronyms, and abbreviations
- 1.4 Organization

Section 1.1 will discuss the project’s purpose – what the software and goals are
for the project, the target audience it is aimed for, and how the project can help in
emphasizing those goals.

Then, Section 1.2 will go in depth of the scope of the project, detailing more on
what the software is. It will discuss what tools are being used and the general limitations
can be for using those tools.

Next, Section 1.3 will help in defining any and all possible shorthand mentioned
in this document. For any terms that have a different meaning other than the one that is
conventionally used, it will also be mentioned here.

Lastly, Section 1.4 will go through the organization of the rest of the Software
Requirements Specifications, as well as a general description for what the sections will go
over in their respective order.

1.1 Purpose

The purpose of this software requirements specifications document is to outline
the project as well as any resources and diagrams that were used in the process of the
software creation and conception for Daily Gambit. Teachers are the customers who want
the software to be created as well as the development team involved in the creation of this
software.

1.2 Scope

The software project that will be made will be called “Daily Gambit”. The
application domain for Daily Gambit will be in HTML, CSS, and Javascript. Daily
Gambit will be an edutainment game that has elements of financial responsibility and
problem-solving skills to teach to younger audiences. It will provide mathematical
problems to students ranging from grades 1 to 8 for them to practice and develop
decision-making skills when considering how to deal with managing and selling stocks or
wagering current money to make a potential profit.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



1.3 Definitions, acronyms, and abbreviations

DG – Daily Gambit

SRS – Software Requirements Specifications

HTML – HyperText Markup Language; a markup language for content displayed on a
web browser

CSS – Cascading Style Sheets; language for describing the presentation of other markup
languages

JS – JavaScript; a markup language used to enhance website features on web-browsers

1.4 Organization

The rest of this document will contain these subsections in order: Overall
Description, Product Perspective, Product Functions, User Characteristics, Constraints,
Assumptions and Dependencies, Apportioning of Requirements, Specific Requirements,
Modeling Requirements, Prototype, How to Run Prototype, Sample Scenarios, and
References. A description of the content of every subsection is located within the
Introduction subsection above if needed.

The rest of the SRS will go through the sections as follows:

- 2 Overall Description
- 2.1 Product Perspective
- 2.2 Product Functions
- 2.3 User Characteristics
- 2.4 Constraints
- 2.5 Assumptions and Dependencies
- 2.6 Apportioning of Requirements

- 3 Specific Requirements
- 4 Modeling Requirements

- 4.1 Use Cases
- 4.2 Class Diagram
- 4.3 Sequence Diagram
- 4.4 State Diagram

- 5 Prototype
- 5.1 How to Run Prototype
- 5.2 Sample Scenarios

- 6 References
- 7 Point of Contact

Section 2 will go more in-depth over the general product and how it will function.
Section 2.1 will go over the product’s perspective, showing what the context for the
product was and all the interfaces that may be required for the software product. Section
2.2 goes into the functions, defining all the major functions of the software as well as any

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



diagrams for the product. Section 2.3 will go into the user characteristics, where the
expectations about the general characteristics of the targeted users are defined. Section
2.4 will go into the product constraints, defining all the interface and software constraints.
Section 2.5 is about the assumptions and dependencies subsection, where any of the
assumptions for first version expectations and dependencies are for the product to run off
of. Section 2.6 is the apportioning of requirements, where a discussion about
requirements that are beyond the scope of the original project is placed. This subsection
in particular will contain information for when future versions of the software will be
released.

Then, Section 3 will go over the specific requirements of the product. This all will
be based on the general analysis of the goals needed to be achieved from the product.

Next, Section 4 will document the modeling requirements and this will be where
the requirements from Section 3 will be used to create several diagrams that will assist in
the product development process. This will be where the use cases and some
representative scenarios will be shown in Section 4.1 and will go into detail about the
class, sequence, and state diagrams in Sections 4.2 – 4.4, respectively.

Following that, Section 5 will go over the product prototype, and will describe
how to run and execute the product in Section 5.1, as well as a sample scenario for how
the target demographic is to play the product in Section 5.2.

After, Section 6 will go into the references used to create the data used in the
game as well as any other sources that have gone into inspiring the goals for the product.

Lastly, Section 7 will show how to contact the development team, in the case there
are any additional questions that aren’t covered in the scope of this SRS.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2 Overall Description

2.1 Product Perspective

The context for DG is to create an “edutainment” game that can be played by any
child between grades 1 to 8. The game is a standalone that only requires the website
domain to run, it is part of the bigger system of education and the relationship between
teachers and students. In terms of interface constraints, the user will need a monitor,
keyboard, and mouse to be able to play the game.

Figure 2.1.1: a general example of the student-teacher relationship for DG

2.2 Product Functions

One of the major functions that the software will perform will be educating teens
with questions while providing a fun time. There are 3 key components in our game:

- the investment system
- the question function
- “gambling”/risk component

The investment system will allow the user to pick which stock they want to invest
their money in.

The start question/next turn function will require the user to answer a question
and if they get it correct they will receive a reward for it.

Lastly, the gamble/risk function but where the user can choose to risk what they
have for greater rewards.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Figure 2.2.1: the sequence diagram for the investment system

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Figure 2.2.2: the sequence diagram for the question system

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Figure 2.2.3: the class diagram for the overall game play of the product

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



For the high-level class diagram the main goal is to improve the math and
decision-making skill of the user who will be playing the game. This is done through the
goal and task of the game which allows the user to get educated with risk and probability.
We want to provide a visually engaging game with the ability to let the user choose what
to invest in and test their math skill and understanding of risk.

Figure 2.2.4: the high-level class diagram to describe the main goal for the product

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



2.3 User Characteristics

We are expecting the user to be a middle schooler male or female who knows a
little pre-algebra. They might be very interested in games that will help pass the time at
school. We are just aiming for the typical public middle school student who has a passion
for learning more about math.

2.4 Constraints

2.4.1 Development Constraints

The development of this game shall adhere to the absolute minimum budget
partitioned by the manager. The project shall be completed within the specified timeline.
Delays may impact the overall project schedule and phases. The game shall be developed
using JavaScript. Deviation from the predefined technology stack must be justified and
approved by the project manager.
2.4.2 Legal and Ethical Constraints

The game will adhere to all relevant laws and regulations in the jurisdictions
where it is made available. The game will also not promote or encourage real-world
gambling activities. It must include a mechanism to prevent excessive virtual gambling
within the game to maintain a responsible and ethical gaming environment. The game
may be subject to age restrictions, and appropriate measures must be implemented to
ensure that it is not accessible to individuals below the legal age for such games in their
respective regions. The development team must ensure that all elements of the game,
including graphics, sounds, and code, do not infringe upon existing intellectual property
rights. Proper licensing and permissions must be obtained for any third-party assets used.
2.4.3 Platform Compatibility

The game shall be designed to run on all operating systems supporting a major
browser, Chrome, Internet Explorer, Mozilla, etc. The game will require an internet
connection to play and will not be able to run locally. If the user-side connection is not
stable, the game will not function as intended.
2.4.4 Platform Safety

The game requires a stable online connection and will make sure no user
information can or will be stored or distributed. The hosting service will be secure and
certified.

2.5 Assumptions and Dependencies

2.5.1 Assumptions

Users are assumed to have a basic understanding of dice games and virtual
currencies. The game’s design and tutorials will be developed with the expectation that
the players have some familiarity with these concepts. Users will be assumed to speak
English, it being the only language supported. It is assumed that the users will be playing

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



on devices connected to the internet and through a major web browser supporting
JavaScript. A stable connection will give best results, and is assumed.
2.5.2 Dependencies

The game may depend on third-party libraries or APIs for certain functionalities,
such as random number generation, financial calculations, or stock market simulations.
Successful development is dependent on the expertise of the development team in the
chosen technology and language (JavaScript). The further inclusion of third-party
graphics, sounds, or other assets in the game depends on obtaining proper licenses and
permissions. Failure to secure appropriate licenses may result in legal issues and could
impact the game’s development and release.

2.6 Apportioning of Requirements

Requirements will be determined by the scope of the current project. Any
requirements suggested outside the scope may be subject to market analysis after the
release of the game. Upon further consideration, future additions may be released based
on open conversations with users and stakeholders. The development team will be made
aware of the scope and requirements based on the characteristics described.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



3 Specific Requirements

1. The product operates on a turn-based system.
1.1. A turn is defined as the cycle of possible choices consisting of buying

investments and pressing the button.
1.2. A turn starts with the roll of a 6-sided die and a question based on that

result.
1.3. A turn ends when the player has chosen what to do with the money they

received from answering the question.
2. The product will open with a main menu.

2.1. The main menu will be where the player chooses to start/exit the game.
2.2. If they choose to start the game, they will be brought to the dashboard

interface.
3. The product has a main dashboard interface.

3.1. The main dashboard will display a button to initiate the roll of the die.
3.2. After the die has been rolled, the investment button, gambling button, and

the next turn button will be made available.
4. The player must answer the end-of-turn question after they roll the die.

4.1. Depending on the dice number, initiate a math problem that coincides with
that number. Each number corresponds to a different topic in math.

4.2. The questions will be based on the 2017 Curriculum Framework for
Mathematics located in The Massachusetts Department of Education and
Common Core standards website.

4.3. Players can only proceed with the rest of their turn after the question has
been answered.

5. The player can “risk” their earnings towards the end of their turn.
5.1. The gamble button can be pressed once during each turn and can be

applied to as many turns as the player wants.
5.2. When the gamble button is chosen, the player can choose how much of

their earnings to risk.
5.3. If the player wins at the gamble button, their earnings are added and

multiplied by a determined and static multiplier of 50%, but their chances
of getting a favorable multiplier decrease.

5.4. If they lose, they are set to lose the amount that they originally chose to
risk.

5.5. The result of the risk button will be randomized, but it will be skewed
based on prior results of the risk button.

6. The player can choose to invest their earnings.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



6.1. After choosing to invest, the player will be redirected to an investment
screen that will display 5 different stocks.

6.2. The investment screen will be updated after each turn, displaying different
sets of stocks every time.

6.3. Each stock will have a pop-up menu, showing whether to buy or sell. The
pop-up will display a certain cap on how many stocks can be bought at
once if the player chooses to buy.

6.4. The player will not gain the investment on that stock until the start of the
next turn.

7. Players will have random events before the end of each turn.
7.1. Random events will only occur when the player clicks the next turn and

can cause the player to either lose money or gain money.
8. The goal at the end of the product will be to have acquired 1 million “dollars”.

8.1. The term “dollars” is used loosely, as the unit of measurement is relative
to the plot of the game.

9. The final product will be tested to ensure safe operation using unit tests.
9.1. The software components of the game will be thoroughly tested through

unit testing to ensure functions such as calculating the final score or profit
are properly functioning.

9.2. Different options – such as edge cases and unavailable options – will be
explored to ensure that the player stays on a linear path towards the goal of
the game.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



4 Modeling Requirements

4.1 Use Cases

The use cases presented will be based on the Use Case Diagram created to show
the overall pathway of the game. This will capture the high-level requirements of the
project, as well as the overall general pathway the player is expected to take during
gameplay.

Use Case: Oval

Actor: Stick Figure

Association: Solid line connecting actor to use case

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Figure 4.1.1: A use case diagram made for the program Daily Gambit

The use case presented will be the high-level requirements and pathway of the
user experience. After starting the application, the player will be prompted with an
option, 'play' or 'quit'. Play will lead to the main dashboard which is presented as three
sub-sections. The player can progress the turn, invest, or gamble money that he/she has
currently. Invest and Gamble will have its extended menus with their subsequent options.
On the invest menu, stocks will be listed and will be able to be bought and sold. Users
may close the menu to gamble or start their turn. Gambling is as simple as pressing the
button and entering a wager amount, this then will be calculated with either a negative or
positive multiplier depending on the current winning probabilities set by the game. These
probabilities will be updated after every gambling event. To take their turn, the player
will hit the take turn button, and be prompted a question based on a dice roll. After
reaping the rewards or lack thereof, the user will move onto a random encounter which
will have positive or negative effects on the user's current money, and enter the dashboard
once again. This all repeats until the player wins by reaching the goal amount of money,
thereby winning the game.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Use Case Name: Play

Actors: Player

Description: The button you click to start the game.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Take Turn

Use Case Name: Take Turn

Actors: Player

Description: The button clicked which proceeds the player to the next turn

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Roll Die, Investments, Gamble, End Turn

Use Case Name: Roll Die

Actors: Player

Description: Rolls the dice (6 sided) to get the dice number

Type: Secondary

Includes: Get Question

Extends: N/A

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Cross-refs: N/A

Uses cases: N/A

Use Case Name: Get Question

Actors: Player

Description: Gets the question depending on the dice roll number

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Reward, Take Turn

Use Case Name: Reward

Actors: Player

Description: Gives money to the user

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Get Question, End Turn

Use Case Name: Check for Encounter

Actors: Player

Description: Checks for if an encounter will happen on this turn

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Check for Win Amount, Initiate Encounter

Use Case Name: Initiate Encounter

Actors: Player

Description: Initiates the Random Encounter if there is one

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Check for Encounter

Use Case Name: Invest

Actors: Player

Description: Opens the investment screen and allows the player to engage in
investments

Type: Primary

Includes: List Stocks

Extends: N/A

Cross-refs: N/A

Uses cases: List Stocks

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Use Case Name: List Stocks

Actors: Player

Description: Lists all the available stocks to buy and sell

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: List Stocks, Select Stocks

Use Case Name: Select Stocks

Actors: Player

Description: Allows you to select the stocks you want to buy or sell

Type: Secondary

Includes: N/A

Extends: Sell, Buy, Close

Cross-refs: N/A

Uses cases: N/A

Use Case Name: Sell

Actors: Player

Description: Allows the user to sell a stock that they own

Type: Secondary

Includes: N/A

Extends: Select Stocks

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Cross-refs: N/A

Uses cases: N/A

Use Case Name: Buy

Actors: Player

Description: Allows the player to buy a stock if they have enough money to

Type: Secondary

Includes: N/A

Extends: Select Stocks

Cross-refs: N/A

Uses cases: N/A

Use Case Name: Close

Actors: Player

Description: Closes the investment menu

Type: Secondary

Includes: N/A

Extends: Select Stocks

Cross-refs: N/A

Uses cases: N/A

Use Case Name: Gamble

Actors: Player

Description: The button that allows players to gamble their money with a
chance of getting a big payout

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Wager Amount

Use Case Name: Wager Amount

Actors: Player

Description: The amount of money that is going to be wager is determined

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Money Multiplier

Use Case Name: Money Multiplier

Actors: Player

Description: The amount of money the player gains multiplied by their current
amount of money

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: Change Winning Probability

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Use Case Name: Change Winning Probability

Actors: Player

Description: Changes winning probability based on a win or lose

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: N/A

Uses cases: N/A

Use Case Name: Show Score

Actors: Player

Description: Shows the score the player has

Type: Secondary

Includes: N/A

Extends: Check for Win Amount

Cross-refs: N/A

Uses cases: N/A

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



4.2 Class Diagram
The class diagram is used to identify the overall major objects and their

relationships with each other.

Figure 4.2.1: A class diagram made for the program Daily Gambit

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Element Name Description
DashboardMenu The menu that will be presented to

the player during each turn and used
to play the game.

Attributes
N/A

Operations
DisplayMoney(): void A method that allows this class to

look at the integer Money in the
User class.

DisplayStocks(): void A method that allows this class to
look at the vector of strings Stocks
in the User class.

GambleButton(): void Activates the Press() function in the
GambleButton class.

TurnButton(): void Activates the NextTurn() function
in the Turn class.

OpenInvestments(): void Opens the GUI for the Investments
class.

Relationships User: Displays to DashboardMenu
MainMenu: Brings you to the DashboardMenu
GambleButton: Is a part of DashboardMenu
Questions: Is a part of DashboardMenu
Turn: Is a part of DashboardMenu
Investments: Is a part of DashboardMenu
RandomEncounters: Is a part of DashboardMenu

UML
Extensions

Uses and accesses User element
Associations: GambleButton, Turn, Questions, RandomEncounter,
Investments

Element Name Description
Dice A die that is rolled after every turn

to determine what question the user
will get.

Attributes
DiceRoll: int The dice roll of a six sided die.

Operations
RollDice(): void Used to calculate the DiceRoll

Relationships Turn: Uses Dice
Questions: Depends on DiceRoll

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Random: Used to find DiceRoll
RandomEncounters: Depends on DiceRoll

UML
Extensions

Includes: Random, Turn
Extends: Questions

Element Name Description
GambleButton The button you can click to gamble.

Win big or go home!
Attributes

TimesPressed: int Tracks how many times the button
has been clicked.

ChancesOfFailure: double Tracks how likely the user is to fail
at the gamble button.

WinningsMultiplier: float Tracks how much the user can win
in addition to their current money
(For example 0.2 would be a 20%
multiplier applied to the user's
money if they won).

Operations
Press(): void The method that activates every

time the button is pressed. Used to
calculate TimesPressed,
ChancesOfFailure, and
WinningsMultiplier.

Relationships DashboardMenu: This is used in the DashboardMenu

UML
Extensions

Includes: DashboardMenu

Element Name Description
Investments Stores the stocks and all their values

every turn, this is also where the
stocks can be bought.

Attributes
StockNames: vector<string> The names of all the stocks.
StockPrices: vector<int> The prices of all the stocks, these

two vectors are linked by having
indices be the same (For example
index 1 has the stocks name and its
price).

Operations

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Buy(int num, string stock):
void

The user can buy the stock for the
current price if they have the
money, and add the stock name to
the user variable StocksOwned.

Sell(int num, string stock):
void

The user can sell the stock for the
current price, removing the stock
name from user variable
StocksOwned.

Close(): void Closes the investment screen.
UpdateInvestments(): void This is used in the next turn to

update the stock prices after each
turn.

Relationships DashboardMenu: Is used in DashboardMenu
Stocks: Stores stock names and values

UML
Extensions

Includes: DashboardMenu
Extends: Stocks

Element Name Description
MainMenu This element will contain the

starting choices for the player
before they enter the game.

Attributes
N/A

Operations
Play(): void This option will allow the player to

choose to start and play the game.
Relationships DashboardMenu: MainMenu is used to get to DashboardMenu

UML
Extensions

Extends: DashboardMenu

Element Name Description
Questions Contains all the questions that need

to be asked to the user after every
turn.

Attributes
Topics: vector<string> The questions themselves exist in

this vector.
Operations

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



GetQuestions(int diceRoll):
string

The questions are received based off
of the number that the user gets in
the dice roll.

AnswerQuestion(): void Displays and opens an input form to
answer the displayed question once
TurnButton() and NextTurn() is
activated.

Relationships DashboardMenu: Used in DashboardMenu

UML
Extensions

Depends on the result of RollDice() from Dice
Includes: DashboardMenu

Element Name Description
Random Used to calculate the DiceRoll.

Attributes
N/A

Operations
N/A

Relationships Dice: Random is used to calculate DiceRoll

UML
Extensions

Used by Dice and RandomEncounters

Element Name Description
RandomEncounters RandomEvents that may occur after

any turn, these could be good or bad
events.

Attributes
RandomEvents:
vector<string>

The event text that would pop up if
you got a random event.

Operations
GetRandomEvent(int
diceRoll): string

This will use the Random class to
get a RandomEvent that can cause
the player to either gain or lose
money.

Relationships Dice:
DashboardMenu:

UML
Extensions

Uses Random
Includes: DashboardMenu

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Element Name Description
Stocks Stores all the stocks and their

values.
Attributes

NameOfStock: string Records the names of the stocks.
StocksOwned: vector<string> Records the stocks that the user

owns.
StockPriceAtPurchase:
vector<int>

Records the price of the stock when
the user bought it.

Operations
N/A

Relationships Investments: Uses Stocks

UML
Extensions

Includes: Investments

Element Name Description
Turn The class that activates every time

you want to go to the next turn,
initiates classes that respond to turn.

Attributes
TurnCounter: int Keep track of how many turns it has

been.
AmountToWin: int Keep the number of money to

exceed to win the game.
Operations

NextTurn(): void Goes to the next turn and activates
all the classes that need to be used
to start the next turn.

CheckifWon(): void Checks if the player has the right
amount of money to win after every
turn.

PlayerWon(): void Sets PlayerWon boolean in User to
true if the player has the right
amount of money.

Relationships DashboardMenu: Composition (Turn makes up DashboardMenu)
Dice: Is a part of Turn (Turn uses dice to continue on)

UML
Extensions

Includes: DashboardMenu
Association: Dice

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Element Name Description
User The scope of this class will pertain

to the player of the game and what
their “player stats” are as they
progress through the game.

Attributes
AmountOfMoney: int This will keep track of the earnings

of the players.
PlayerWon: int This will be a condition that will

become true when the condition to
win the game is met.

Operations
N/A

Relationships MainMenu: Uses
Stocks: Uses
DashboardMenu: Uses and Accesses

UML
Extensions

Uses and Accesses DashboardMenu

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



4.3 Representative Scenarios of System
4.3.1 Playing the Turn

The player initiates the game by clicking the "Play" button, triggering the "Start
Turn" use case. This, in turn, activates the "Roll Die" use case, resulting in the generation
of a random number. The system then proceeds to the "Get Question" use case, fetching a
question corresponding to the dice number. After the player answers the question, the
flow diverges based on correctness. A correct answer invokes the "Gain Money" use case.
The sequence continues, guiding the player through the game dynamics.

4.3.2 Investing in Stocks

Upon clicking the "Investments" button, the player engages in the "Investments"
use case, which invokes the "List Stocks" use case. The system displays available stocks,
allowing the player to select stocks for buying or selling in the "Select Stocks" use case.
This may further lead to the execution of the "Buy" or "Sell" use cases. Upon completing
these transactions, the player clicks "Close," triggering the "Close" use case and
concluding the stock investment process.

4.3.3 Gambling

The player decides to gamble by clicking the "Gamble" button, initiating the
"Gamble" use case. This leads to the "Wager Money" use case, where the player
determines the amount of money to wager. The outcome of the gamble may result in
either winning, triggering the "Gain Money Multiplier" use case, or losing, leading to the
"Lose Wagered Money" use case. Subsequently, the "End Turn" use case is activated,
marking the conclusion of the gambling event and initiating other turn-related events.

4.4 Sequence Diagram
Lifeline: Vertical dashed line representing the lifespan of an object
Message: Arrowed line indicating communication between objects
Gambling

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Figure 4.4.1: A sequence diagram made for the program Daily Gambit. The user in this diagram wants
to press the gamble button

Investing in Stocks

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Figure 4.4.2: A sequence diagram made for the program Daily Gambit. The user in this diagram is
investing in stocks

Playing with Turn

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



Figure 4.4.3: A sequence diagram made for the program Daily Gambit. The user in this diagram is
playing the game turn-by-turn

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



4.5 State Diagram

Figure 4.5.1: State diagram of the Daily Gambit program
The state diagram demonstrates general scenarios to describe the behavior of when a player plays the

game and uses the interaction functionalities of the UI.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



5 Prototype
The Daily Gambit prototype [5], also known as DG for short, will demonstrate a

dynamic and interactive user interface featuring responsive forms and buttons. The
journey begins in the main menu, where players are introduced to the overall goal of the
game, stating that to complete the game, the user must complete a series of questions in
order to reach the milestone of having a million dollars.

In addition to the task and goal of the game, the main menu also features a
prominent "Start Game" button that invites users to initiate gameplay. Upon selecting
"Start Game," users are seamlessly redirected to the game screen, where the dashboard
controls take place. The dashboard prominently displays the current amount of money
held by the player and provides information about the stocks in their possession.
Interactive buttons further enhance the user's engagement by offering access to different
game features.

The investment button unlocks an interactive investment menu, empowering users
to make informed decisions about buying or selling stocks in which they will have to
select which stocks are available within the store or in their inventory to purchase and sell
respectively. Once purchased or sold, a notification will appear on the screen to confirm
that the user bought or sold stocks respectively, and overall, this system not only
contributes to the player's net worth but also adds a strategic dimension to the game. The
gamble button introduces an element of risk, allowing users to wager their current money
for a chance to make a potential profit. If users successfully wager their current money,
the success rate decreases each time, otherwise, the player loses the money they wagered
for and the success rate will remain the same. Overall, the success rate and winnings
multiplier provide crucial information, and outcomes are immediately reflected in the
player's financial status.

Another significant feature is the start question button, triggering an educational
challenge for users. The questions generated are mathematical themed and topics will be
randomly picked based on the dice’s roll. So for instance, if the die rolls on a 6, the
mathematical topic will involve exponential problems and equations. The questions will
be displayed on the center top of the user’s device screen and the input form will be
shown on the center middle along with the submit button for users to submit their final
answer. Once submitted, the game will display whether or not the user answers correctly
or not. Random events are also another feature of the game that can sometimes occur to
negatively or positively affect the player by giving additional money or losing more
money and is tied together when users click on the start question button. The integration
of an instant feedback mechanism ensures that users receive timely information about the
outcomes of their actions, whether it be investment choices, gambling results, or the
correctness of their answers.

The overall design prioritizes a user-friendly interface, with responsive forms and
buttons contributing to a seamless and enjoyable experience. Smooth transitions between
different screens and components enhance the overall flow of the game. The combination
of financial decision-making, risk-taking through gambling, and educational challenges

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



creates an immersive and dynamic gaming environment, ensuring that users remain
engaged and entertained throughout their DG experience.

5.1 How to Run Prototype
The first version of the prototype, Daily Gambit, will serve as a visual

representation of the envisioned application. It is primarily accessible through a web
interface, requiring a modern web browser for optimal viewing such as Google Chrome,
Microsoft Edge, and Mozilla Firefox. Since it requires modern web browsers to view and
use the game, a stable internet connection will be required which is one of the constraints
of the prototype along with the need for a web browser to access it. Users can explore the
provided interfaces to understand the design elements and functionalities and there are no
specific system configuration or plugin requirements in order to use or access the
application. The prototype will be accessible through this URL link:
https://daily-gambit-game.netlify.app/

However, to run the prototype locally, a modern web browser like Google Chrome
is needed to download if you do not have one. An IDE or integrated development
environment also needs to be downloaded in order to view, edit, and run the files.
Download Visual Studio Code and once it successfully downloads, download or clone the
project repository of the prototype where it currently resides on GitHub. This can
typically be done using a version control system like Git through the command git clone
project URL within the terminal in your IDE like Visual Studio Code, or by downloading
a ZIP archive of the project inside one of your computer's directories. Once this is done,
find the directory in which you downloaded or cloned or if you are already in the
directory of the prototype, find the index.html file of the prototype and click run in Visual
Studio Code and click start debugging. After doing so, you will have the option to select
which debugger you would like to run the application such as Microsoft Edge or Google
Chrome. Once you click one of them, you will be able to run the prototype without issue.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



5.2 Sample Scenarios

The game has 3 different sections, Investment, Question, and Gamble that the user
can interact with to earn rewards.

5.2.1 Investment

Investment window allows users to use their “Current Money” to buy stocks that
are available on the market.

The Investment window has 2 subsections, the Market section and the Inventory
section. The Market section shows what stocks are currently available on the market. The
Inventory section shows what stocks are bought and owned by the user.

The user can freely choose to hold on to their stocks or sell them to earn or lose
money.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



5.2.2 Question

Question section is where users can test their knowledge. It generates a wide
range of math problems, from solving exponential equations to basic algebra. Each
correct answer to the question rewards the user money which they can spend to purchase
stocks.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



5.2.3 Gamble

The Gamble button allows users to double-down their risk and reward on their
next question encounter.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



6 References
Website entry: https://daily-gambit-game.netlify.app/

[1] Massachusetts Curriculum Framework. (2017). MATHEMATICS Grades
Pre-Kindergarten to 12. MATHEMATICS Grades Pre-Kindergarten to 12 .
https://www.doe.mass.edu/frameworks/math/2017-06.pdf

[2] Draw.io - free flowchart maker and diagrams online. Flowchart Maker & Online
Diagram Software. (n.d.). https://app.diagrams.net/

[3] UML sequence diagram online tool. SequenceDiagram.org - UML Sequence
Diagram Online Tool. (n.d.). https://sequencediagram.org/

[4] Tea teatime. (n.d.). Teateatime/daily_gambit. GitHub.
https://github.com/teateatime/daily_gambit

[5] Microsoft. (2021, November 3). Visual studio code - code editing. redefined. RSS.
https://code.visualstudio.com/

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM



7 Point of Contact
For further information regarding this document and project, please contact Prof. Daly at
University of Massachusetts Lowell (james_daly at uml.edu). All materials in this
document have been sanitized for proprietary data. The students and the instructor
gratefully acknowledge the participation of our industrial collaborators.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM


